

# Course Specifications

Valid as from the academic year 2015-2016

Physics 2: Vibration, Waves and Thermodynamics (O000085)

| Course size (nominal values; actual values may depend on programme)                                        |                         |             |                    |          |
|------------------------------------------------------------------------------------------------------------|-------------------------|-------------|--------------------|----------|
| Credits 5.0                                                                                                | Study time 150 h        | Contact hrs | 60.0 h             |          |
| Course offerings and teaching methods in academic year 2015-2016                                           |                         |             |                    |          |
| A (semester 2)                                                                                             | lecture                 |             | 20.0 h             |          |
|                                                                                                            | lecture: plenary exerci | ses         | 10.0 h             |          |
|                                                                                                            | guided self-study       |             | 10.0 h             |          |
|                                                                                                            | seminar: coached exe    | rcises      | 20.0 h             |          |
| Lecturers in academic year 2015-2016                                                                       |                         |             |                    |          |
| Stathopoulos, Costas                                                                                       |                         | LA07        | lecturer-in-charge |          |
| Chockchaisawasdee, Suwimol                                                                                 |                         | CA10        | co-lecture         | er       |
| Offered in the following programmes in 2015-2016                                                           |                         |             | crdts              | offering |
| Bachelor of Science in Food Technology                                                                     |                         | 5           | Α                  |          |
| Joint Section Bachelor of Science in Environmental Technology, Food Technology and Molecular Biotechnology |                         |             | 5                  | Α        |
| Bachelor of Science in Environmental Technology                                                            |                         |             | 5                  | Α        |
| Bachelor of Science in Molecular Biotechnology                                                             |                         |             | 5                  | Α        |

# **Teaching languages**

**English** 

## **Keywords**

Solids, liquids, gases; Waves; Laws of thermodynamics

#### Position of the course

The aim of the course is to establish an understanding of the various states of matter and to gain a working understanding of both physical and chemical thermodynamics. With respect to physical aspects the student learns how to calculate the energy transfer of processes. With respect to chemical aspects, the student learns how to calculate equilibria. The theoretical background is illustrated by means of calculation examples.

#### **Contents**

- 1. Static equilibrium; Elasticity and fracture
- 2. Fluids
- 3. Oscillations
- 4. Wave motion
- 5. Sound
- 6. Temperature, thermal expansion and the ideal gas law
- 7. Kinetic theory of gases
- 8. Heat and the first law of thermodynamics
- 9. Second law of thermodynamics; third law of thermodynamics

## **Initial competences**

Knowledge of general chemistry, physics and mathematics. Successful completion of Physics 1.

#### **Final competences**

The student will be able to i) understand the behaviours of various states of matter under different conditions and ii) calculate energy transfer in physical and chemical systems.

#### **Conditions for credit contract**

Access to this course unit via a credit contract is determined after successful competences assessment

#### **Conditions for exam contract**

This course unit cannot be taken via an exam contract

#### **Teaching methods**

Guided self-study, lecture, lecture: plenary exercises, seminar: coached exercises

## Learning materials and price

D. C. Giancoli (2009), Physics for scientists & engineers with modern physics, Chapters 12-20, Pearson-Prentice Hall.

#### References

D. C. Giancoli (2009), Physics for scientists & engineers with modern physics, Chapters 12-20, Pearson-Prentice Hall.

## Course content-related study coaching

#### **Evaluation methods**

end-of-term evaluation and continuous assessment

## Examination methods in case of periodic evaluation during the first examination period

Written examination with open questions, written examination with multiple choice questions

#### Examination methods in case of periodic evaluation during the second examination period

## Examination methods in case of permanent evaluation

Participation

# Possibilities of retake in case of permanent evaluation

examination during the second examination period is possible in modified form

#### Calculation of the examination mark

Final written exam with open questions and with multiple choice questions: 80% Seminar Participation: 20%

(Approved) 2